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A novel effective medium theory was proposed to model the thermal conductivity of porous materials. In
this theory, phases (or components) are treated as small spheres dispersing into an assumed uniform
medium with the thermal conductivity km. A simple algebraic expression for the thermal conductivity
based on this theory was derived, in which each has a distinct physical basis. The expression can unify
five basic structural models (Series, Parallel, two forms of Maxwell–Eucken, effective medium theory)
through variations of km. Furthermore, the feasibility of the model was evaluated using the experimental
data from previous literatures and those calculated by this model.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays there are heat attentions on porous materials due to
their widespread industrial applications. The thermal conductivity
plays an important role in the performance of these materials.
From the point of view of heat conduction, porous materials can
be considered as a two-phase (or two-component) system, viz. a
solid skeleton and air, and thermal conductivity can be used to de-
scribe heat transfer through this complex system [1]. In this case,
there are many analytical models proposed to predict the thermal
conductivity of porous materials [2,3].

The thermal conductivity of porous materials is a complex
property, as it is not only dependent on the properties of the solid
component and porosity but also the structure of the materials [4].
For simple structures five basic structural models including the
Series and Parallel models [5], Maxwell–Eucken models [6], effec-
tive medium theory (EMT) equation [7] were proposed. Afterwards
some models for slightly complex structures such as the area con-
tact model [8] and unit cell method [9] were constructed. However,
each of these models assumes a certain physical structure and
could not be applicable to all types of structure. Instead, a common
approach is adding an empirical weighting parameter in basic
structural models to account for differences in structure [10]. But
the parameter is determined experimentally without any distinct
physical basis, and cannot reflect the actual structure of the porous
materials.
In this paper, a procedure for modelling the thermal conductiv-
ity of porous materials using a novel effective medium theory was
presented. Five basic structural models can be unified by a simple
equation without any empirical parameter.

2. Theory

Five basic structural models mentioned-above (shown sche-
matically in Fig. 1), including the Series, Parallel, Maxwell–Eucken
(two forms) and EMT models, are shown below in respective order
for a two-component system [11]:

ke ¼
1

ð1� v2Þ=k1 þ v2=k2
ð1Þ

ke ¼ k1ð1� v2Þ þ k2v2 ð2Þ

ke ¼ k1
2k1 þ k2 � 2ðk1 � k2Þv2

2k1 þ k2 þ ðk1 � k2Þv2
ðcomponent 1 continuousÞ ð3Þ

ke ¼ k2
2k2 þ k1 � 2ðk2 � k1Þð1� v2Þ
2k2 þ k1 þ ðk2 � k1Þð1� v2Þ

ðcomponent 2 continuousÞ

ð4Þ

ð1� v2Þ
k1 � ke

k1 þ 2ke
þ v2

k2 � ke

k2 þ 2ke
¼ 0 ð5Þ

where k and v are thermal conductivity and volume fraction, and
subscripts of e, 1 and 2 represent the two-component material sys-
tem, components 1 and 2, respectively.
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Fig. 1. Schematic illustrations of the novel effective medium theory.
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In order to make these basic structural models more generic for
different structures, an extra parameter is sometimes introduced.
For example, Krischer proposed a weighted harmonic mean of
the Series and Parallel models, where the weighting parameter f
(sometimes referred to as the ‘distribution factor’) has a value
ranging between 0 and 1 [10]:

ke ¼
1

1�f
k1ð1�v2Þþk2v2

þ f 1�v2
k1
þ v2

k2

� �h i : ð6Þ

Similarly, Maxwell–Eucken and EMT models have been modified by
Hamilton and Kirkpatrick respectively, as follows:

ke ¼ k1
ðf � 1Þk1 þ k2 � ðf � 1Þðk1 � k2Þv2

ðf � 1Þk1 þ k2 þ ðk1 � k2Þv2
ð7Þ

and

ð1� v2Þ
k1 � ke

k1 þ ðf=2� 1Þke
þ v2

k2 � ke

k2 þ ðf=2� 1Þke
¼ 0: ð8Þ

In principle, the modified models such as Eqs. (6)–(8), may be used
to predict the thermal conductivity of any structure with a suitable
value of f, as long as the data lie within the envelope bounded by the
Series and Parallel models. Although these modified models have
been widely used, the weighting parameter f is determined empir-
ically without any distinct physical basis.

In this paper, we propose a novel effective medium theory for
multi-phase (or multi-component) materials. Fig. 1 shows the
schematic illustrations of the novel effective medium theory in
present work. The primary assumption is that phases (or compo-
nents) are treated as small spheres dispersing into an assumed uni-
form medium with the thermal conductivity km. If a material
consists of i phases, phases i is considered as n small spheres of ra-
dius Ri and thermal conductivity ki contained within an uniform
medium with thermal conductivity km.

For a single small sphere region within a uniform medium un-
der steady-state conditions, the temperature distribution is gov-
erned by Laplace’s Equation, as shown below in two-dimensional
polar coordinates:

1
r2

@

@r
r2 @T
@r

� �
þ 1

r2 sin h
@

@h
sin h

@T
@h

� �
¼ 0 ð9Þ

following boundary conditions:
� at r ¼ 0 Ti–1;
� at r ¼ Ri ki

@Ti
@r ¼ km

@Tm
@r and @Ti

@h ¼
@Tm
@h ;

� at r � Ri Tm ¼ br cos h

where, r and h are polar radius and polar angle in polar coordi-
nate, T is the temperature, the constant b (K/m) is the magnitude of
the temperature gradient in the continuous medium, and subscript
of i and m represent phase i and assumed uniform medium. A gen-
eral solution of Eq. (9) is:

T ¼ Aþ B
r
þ Cr cos hþ D

r2 cos h ð10Þ

Using the boundary conditions to substitute for A, B, C and D in Eq.
(10) yields:

Ti ¼ b
3km

ki þ km
r cos h ðwithin the sphereÞ ð11Þ

and

Tm ¼ br cos h� bR3
i

ki � km

ki þ 2km

cos h
r2 ðoutside the sphereÞ: ð12Þ

Because of n small spheres for each phase, Eq. (12) should become:

Tm ¼ br cos h� RbnR3
i

ki � km

ki þ 2km

cos h
r2 : ð13Þ

On the other hand, the material could be considered as a large
sphere of radius R and thermal conductivity ke contained within
the uniform medium. The volume fraction vi of phase i within the
material is:

v i ¼
nR3

i

R3 : ð14Þ

So, Eq. (12) is:

Tm ¼ br cos h�
X

bv iR
3 ki � km

ki þ 2km

cos h
r2 : ð15Þ

Because the large sphere with thermal conductivity ke is filled with-
in the assumed uniform medium, Eq. (12) would become:

Tm ¼ br cos h� bR3 ke � km

ke þ 2km

cos h
r2 : ð16Þ

Eq. (15) should be equal to Eq. (16), and hence we get:

Rv i
ki � km

ki þ 2km
¼ ke � km

ke þ 2km
: ð17Þ



Table 1
Comparison between thermal conductivity values calculated by this model and experimental values with different porous materials.

Porous materials e (%) ks (W/mK) ka (W/mK) Estimated (W/mK) Experimental (W/mK) km (W/mK)

Dry sand 19 9.0 0.026 0.69 0.63 0.07
32 0.37 0.36
36 0.31 0.27
59 0.14 0.18

Cellular ceramic 84 2.11 0.026 0.19 0.18 0.80
85 0.18 0.17
87 0.15 0.15

Fibrous material 55.4 167 0.026 19.2 18.4 15.9
72.5 9.5 10.0
80.4 6.2 5.3
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Because Rv i is equal to 1, Eq. (17) should be changed to:

Rv i
ke � km

ke þ 2km
� ki � km

ki þ 2km

� �
¼ 0: ð18Þ

When rearranged, Eq. (18) becomes:

3km

ke þ 2km
Rv i

ke � ki

ki þ 2km

� �
¼ 0: ð19Þ

This model required that Eq. (19) must be zero, i.e.:

Rv i
ki � ke

ki þ 2km

� �
¼ 0: ð20Þ

For a porous material, it can be considered as a two-phase system
(solid and air), and Eq. (20) becomes

ð1� eÞ ks � ke

ks þ 2km
þ e

ka � ke

ka þ 2km
¼ 0 ð21Þ

where, k and e are thermal conductivity and porosity, and sub-
scripts of e, a and s represent the two-phase material system, air
and solid, respectively. When km = ke, Eq. (21) is the EMT model.
When km = ks and ka, Eq. (21) is the Maxwell–Eucken 1 and 2,
respectively. When km = 0 Eq. (21) is the Series model, and when
km =1 Eq. (21) is the Parallel model. To sum up, the model can
change to various forms with different values of km, including the
Series and Parallel models, Maxwell–Eucken models and EMT
model.
3. Results and discussion

In this work, the experimental data from previous literatures
including three kinds of porous materials, such as dry sand (‘‘exter-
nal porosity’’ material) [12], cellular ceramics (‘‘internal porosity’’
material) [13] and fibrous porous materials (non-spherical porous
material) [14], are used to test the model. In Table 1, thermal con-
ductivity experimental results from previous literatures with dif-
ferent porous materials are compared with Eq. (21) estimations.
For convenience, we assume that km is a constant, and the values
of km for different porous materials are also shown. The compari-
son shows a remarkably good agreement for the whole porosity.

In fact, in Eq. (21) the value of km reflects the heat conduction
between solid and air. When km = ke, the material has a completely
random distribution of solid and air, and the model is the EMT
model itself. When km = ks, the solid is continuous, the model be-
comes the Maxwell–Eucken 1. While when km = ka, the air is con-
tinuous, the model becomes the Maxwell–Eucken 2. When
km = 0, the heat conduction between solid and air is impossible
and this situation is identical to the Parallel model. In contrast,
when km =1, all heat transfer through solid to air as a result of
no heat block between them and this mechanism is same as the
Series model.
Recently, Wang developed a unifying equation for five funda-
mental effective thermal conductivity structural models by suit-
able choice of the parameters di and ~k, i.e. [11]:

ke ¼
Pm

i¼1kiv i
di

~k
ðdi�1Þ~kþkiPm

i¼1
di

~k
ðdi�1Þ~kþki

: ð22Þ

He pointed out that the parameter of di may be a parameter that
combines both aspects of component shape and number of Euclid-
ean dimensions. The most common approach is to take di = 3
(spherical dispersed phase). But the physical basis of the parameter
~k was ambiguous. In fact, substituting km for ~k in Eq. (22), it is iden-
tical to Eq. (20) when di = 3. Therefore, the parameter ~k should have
the same physical basis as km.
4. Conclusions

In this work, a novel effective medium theory was presented for
modelling the thermal conductivity of porous materials. In the
present model, phases (or components) are treated as small
spheres dispersing into an assumed uniform medium which has
the thermal conductivity km. Based on heat transfer analysis, a sim-
ple expression of effective thermal conductivity was obtained
without containing any empirical parameters. The model can unify
five fundamental effective thermal conductivity structural models
with different values of km. Compared with the experimental data
in previous literatures, the effective thermal conductivity predicted
by this model presents a good agreement.
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